Search results for "OX40 Ligand"
showing 3 items of 3 documents
Technical advance: Soluble OX40 molecule mimics regulatory T cell modulatory activity on FCεRI-dependent mast cell degranulation
2011
ABSTRACT Tregs play a central role in modulating FcɛRI-dependent MC effector functions in the course of the allergic response. Cellular interaction depends on the constitutive expression of OX40 on Tregs and the OX40L counterpart on MCs. Study of OX40L signaling on MCs is hampered by the need of a highly purified molecule, which triggers OX40L specifically. We now report that sOX40 mimics the physiological activity of Treg interaction by binding to activated MCs. When treated with sOX40, activated MCs showed decreased degranulation and Ca++ influx, whereas PLC-γ2 phosphorylation remained unaffected. Once injected into experimental animals, sOX40 not only located within the endothelium but a…
Human OX40 tunes the function of regulatory T cells in tumor and nontumor areas of hepatitis C virus-infected liver tissue.
2014
International audience; Regulatory T cells (Tregs) can be considered as a mixed population of distinct subsets, endowed with a diverse extent and quality of adaptation to microenvironmental signals. Here, we uncovered an opposite distribution of Treg expansion, phenotype, and plasticity in different microenvironments in the same organ (liver) derived from patients with chronic hepatitis C: On the one side, cirrhotic and tumor fragments were moderately and highly infiltrated by Tregs, respectively, expressing OX40 and a T-bet high IFN-c – " T-helper (Th)1-suppressing " phenotype; on the other side, noncirrhotic liver specimens contained low frequencies of Tregs that expressed low levels of O…
CD40 activity on mesenchymal cells negatively regulates OX40L to maintain bone marrow immune homeostasis under stress conditions
2021
BackgroundWithin the bone marrow (BM), mature T cells are maintained under homeostatic conditions to facilitate proper hematopoietic development. This homeostasis depends upon a peculiar elevated frequency of regulatory T cells (Tregs) and immune regulatory activities from BM-mesenchymal stem cells (BM-MSCs). In response to BM transplantation (BMT), the conditioning regimen exposes the BM to a dramatic induction of inflammatory cytokines and causes an unbalanced T-effector (Teff) and Treg ratio. This imbalance negatively impacts hematopoiesis, particularly in regard to B-cell lymphopoiesis that requires an intact cross-talk between BM-MSCs and Tregs. The mechanisms underlying the ability of…